Abstract

The morphologies of the X-rays from synchrotron radiation and the γ-rays produced via either inverse Compton scattering or proton–proton interaction for the supernova remnant RX J0852.0−4622 are investigated using a three-dimensional magnetohydrodynamic simulation. The simulation is initiated with the supernova ejecta imbedded in the turbulent environment, and the distributions of the density and the magnetic field within the shock wave can be obtained. Assuming that the number of the protons accelerated by the forward shock is proportional to the local density since more protons can be injected into the diffusive shock acceleration process with a higher density, the morphology of the emission produced via the inelastic collisions between the accelerated protons with the ambient matter is achieved. Furthermore, the X-ray map of the synchrotron radiation and the γ-ray image of the inverse Compton scattering can be obtained with the assumption that the relativistic electrons have a similar spatial distribution as the protons. The results show that the shock front is distorted by the turbulent medium, and the morphologies of the non-thermal emission from RX J0852.0−4622, which shows a broken shell with bright rims at the shock in the observed images both in the X-ray band and in the TeV γ-ray band, can be generally reproduced using the model. It can be concluded that the observed broken morphologies of the non-thermal emission with bright regions along the shock are the result of the remnant evolving in a turbulent plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.