Abstract

The inflammatory focus is similar to the tumor microenvironment, which contains a complex milieu with immune cells and macrophages. The accumulation of cells promotes local pH and O2 tension decline (hypoxia). Local O2 tension decline activates hypoxia-inducible factor α and β (HIF-1α and HIF-1β adenosine triphosphate (ATP) release. ATP activates the P2X7 receptor and modulates ischemic/hypoxic conditions. Similarly, α1α may regulate P2X7 receptor expression in the hypoxic microenvironment. Therefore, we investigated P2X7 receptor function under simulated hypoxic conditions by pretreating peritoneal macrophages with mitochondrial electron transport chain complex inhibitors (simulated hypoxia). Treatment with mitochondrial electron transport chain complex inhibitors until three hours of exposure did not cause LDH release. Additionally, mitochondrial electron transport chain complex inhibitors increased ATP-induced P2X7 receptor function without being able to directly activate this receptor. Other P2 receptor subtypes do not appear to participate in this mechanism. Simulated hypoxia augmented HIF-1α levels and suppressed HIF-1α and P2X7 receptor antagonists. Similarly, simulated hypoxia increased ATP-induced dye uptake and inhibited HIF-1α antagonists. Another factor activated in simulated hypoxic conditions was the intracellular P2X7 receptor regulator PIP2. Treatment with HIF-1α agonists increased PIP2 levels and reversed the effects of HIF-1α and P2X7 receptor antagonists. Additionally, the improved ATP-induced dye uptake caused by the simulated hypoxia stimulus was inhibited by P2X7 receptor and PIP2 antagonists. Therefore, simulated hypoxia may augment P2X7 receptor activity for a pathway dependent on HIF-1α and PIP2 activation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call