Abstract

The majority of robots in factories today are operated with conventional control strategies that require individual programming on a task-by-task basis, with no margin for error. As an alternative to the rudimentary operation planning and task-programming techniques, machine learning has shown significant promise for higher-level task planning, with the development of reinforcement learning (RL)-based control strategies. This paper reviews the implementation of combined traditional and RL control for simulated and real environments to validate the RL approach for standard industrial tasks such as reach, grasp, and pick-and-place. The goal of this research is to bring intelligence to robotic control so that robotic operations can be completed without precisely defining the environment, constraints, and the action plan. The results from this approach provide optimistic preliminary data on the application of RL to real-world robotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call