Abstract

The local surface chemistry of a low-Ni austenitic stainless steel AISI type 304 used for tensile testing in hydrogen atmosphere is characterized by secondary ion mass spectrometry (SIMS). A chemical map on cylindrical austenitic stainless steel samples can be obtained even after a tensile test. In an effort to obtain the proper chemical element distribution on the samples, the influence of contamination and sample orientation is discussed. An iron oxide on top of a chromium oxide layer is present and Si segregation at grain boundaries is detected. Oxides are judged to reduce the initial hydrogen attack but to be of minor importance for crack propagation during the embrittlement process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.