Abstract

Long considered a failure, second-order symmetry-adapted perturbation theory (SAPT) based on Kohn-Sham orbitals, or SAPT0(KS), can be resurrected for semiquantitative purposes using long-range corrected density functionals whose asymptotic behavior is adjusted separately for each monomer. As in other contexts, correct asymptotic behavior can be enforced via "optimal tuning" based on the ionization energy theorem of density functional theory, but the tuning procedure is tedious, expensive for large systems, and comes with a troubling dependence on system size. Here, we show that essentially identical results are obtained using a fast, convenient, and automated tuning procedure based on the size of the exchange hole. In conjunction with "extended" (X)SAPT methods that improve the description of dispersion, this procedure achieves benchmark-quality interaction energies, along with the usual SAPT energy decomposition, without the hassle of system-specific tuning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.