Abstract
It is shown how to model propositional constants within the simplified Routley-Meyer semantics. Various axioms and rules allowing the definition of modal operators, implicative negations, enthymematical conditionals, and propositions expressing various infinite conjunctions and disjunctions are set forth and shown to correspond to specific frame conditions. Two propositional constants which are both often designated as “the Ackermann constant” are shown to capture two such “infinite” propositions: The conjunction of every logical law and the conjunction of every truth –what Anderson and Belnap called the “world” constant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.