Abstract

The micro-perforated panel (MPP) structure has been widely used in various noise control applications, and thus its acoustic performance prediction has been receiving increasing attention. The acoustic performance of simple MPP structures, such as a MPP sound absorber, has been predicted using an analytical calculation method. However, this is not a suitable approach toward predicting the acoustic performance of complicated MPP structures, owing to the structural complexity of these structures. Moreover, the many perforations of submillimeter scale diameter render the MPP structures very difficult to analyze using numerical simulation. Thus, this study focused on two different simplified MPP simulation methods: the transfer admittance method and the equivalent fluid method, and their application on double-layer MPP structures. Based on the two simplified MPP simulation methods, the transmission loss value of the double-layer MPP mufflers with two sets of different structural parameters was calculated, respectively. The predicted results were compared with the impedance tube measurements. The results revealed that the two simplified MPP simulation methods could effectively predict the acoustic performance of double-layer MPP structures. Moreover, the prediction based on the transfer admittance method can outperform the two simplified simulation methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call