Abstract
We present a low-complexity maximum likelihood (ML) detector for a coded double space-time transmit diversity-orthogonal frequency division multiplexing (DSTTD-OFDM) system. The proposed ML detector exploits properties of two permuted equivalent channel matrices and multiple decision-feedback (DF) detections. This can reduce computational efforts from O(|A|4) to O(2|A|2) with maintaining ML performance, where |A| is the modulation order. Numerical results shows that the proposed ML detector obtains ML performance and requires remarkably lower computational loads compared with the conventional ML detector.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have