Abstract

Hysteretic energy dissipating devices (HEDDs) have been increasingly applied to building construction to improve the seismic performance. The seismic responses of such damped structures are significantly affected by HEDD’s structural properties. An accurate investigation on the propagation of HEDD’s structural properties is required for reasonable evaluation of the seismic performance of a structure. This study aims to develop simplified methods that can estimate the collective uncertainty-propagation to the seismic response of damped structures employing HEDDs. To achieve this, three- and six-story steel moment-resisting frames were selected and the propagations of the individual HEDD’s property-uncertainties were evaluated when they are subjected to various levels of seismic demand. Based on the result of individual uncertainty-propagations, a simplified method is proposed to evaluate the variation of seismic response collectively propagated by HEDD’s property-uncertainties and is verified by comparing with the exact collective uncertainty-propagation calculated using the Monte Carlo simulation method. The proposed method, called as a modified SRSS method in this study, is established from a conventional square root of the sum of the squares (SRSS) method with the relative contributions of the individual HEDD’s property-uncertainty propagations. This study shows that the modified SRSS method provides a better estimation than the conventional SRSS method and can significantly reduce computational time with reasonable accuracy compared with the Monte Carlo simulation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.