Abstract

Purpose: The soil’s anisotropy induced by stress (i.e. stress induced anisotropy) has an important effect on the behavior of soil. This paper focuses on analyzing the anisotropy of remolded Shantou soft clay under compression stress path. Design/methodology/approach: Experiments were executed by using three axle experimental instruments. The data obtained from the plain strain tests were analyzed and the relationship between stress and strain was calculated by using the modified Duncan- Chang and Lade-Duncan models. The models were modified under the condition of plain strain and cohesion. Findings: It was concluded that in complex stress path conditions, the conventional triaxial tests may not fully reflect the actual stress of soil and its response in the Duncan-Chang and Lade-Duncan models. Research limitations/implications: The formulation of Mohr-Coulomb failure criterion in the plasticity framework is quite diffcult. As a result, dilatancy cannot be described. The properties of soil in unload or drained conditions remain to be part of further investigated. Practical implications: Based upon the two stiffness parameters, the modified Duncan- Chang model has captured the soil behaviour in a very conformable way and is recommened for practical modeling. These constitutive models of soil are widely used in the numerical analyses of soil structure such as embankments. Originality/value: Duncan-Chang and Lade-Duncan models widely used in engineering practices are modes based on conventional triaxial cases. Both models have have some inherent limitations to represent the stress-strain characteristics of soils, such as shear-induced dilatancy and stress path dependency and required corrections. In this investigation, the tests are carried out in undrained conditions. It is related to the properties of soil in load conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call