Abstract

The simplicial volume introduced by Gromov provides a topologically accessible lower bound for the minimal volume. Lafont and Schmidt proved that the simplicial volume of closed, locally symmetric spaces of non-compact type is positive. In this paper, we extend this positivity result to certain non-compact locally symmetric spaces of finite volume, including Hilbert modular varieties. The key idea is to reduce the problem to the compact case by first relating the simplicial volume of these manifolds to the Lipschitz simplicial volume and then taking advantage of a proportionality principle for the Lipschitz simplicial volume. Moreover, using computations of Bucher–Karlsson for the simplicial volume of products of closed surfaces, we obtain the exact value of the simplicial volume of Hilbert modular surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.