Abstract
In this paper, we show that every closed, locally homogeneous Riemannian manifold with positive simplicial volume must be homeomorphic to a locally symmetric space of non-compact type, giving a converse to a result by Lafont and Schmidt within the scope of closed, locally homogeneous Riemannian manifolds. This characterizes all closed locally homogeneous Riemannian manifolds with nonzero simplicial volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.