Abstract

In this paper, we study ideal- and congruence-simpleness for the Leavitt path algebras of directed graphs with coefficients in a commutative semiring S, as well as establish some fundamental properties of those algebras. We provide a complete characterization of ideal-simple Leavitt path algebras with coefficients in a semifield S that extends the well-known characterizations when the ground semiring S is a field. Also, extending the well-known characterizations when S is a field or commutative ring, we present a complete characterization of congruence-simple Leavitt path algebras over row-finite graphs with coefficients in a commutative semiring S.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.