Abstract

AbstractOptical flow is a critical component of video editing applications, e.g. for tasks such as object tracking, segmentation, and selection. In this paper, we propose an optical flow algorithm called SimpleFlow whose running times increase sublinearly in the number of pixels. Central to our approach is a probabilistic representation of the motion flow that is computed using only local evidence and without resorting to global optimization. To estimate the flow in image regions where the motion is smooth, we use a sparse set of samples only, thereby avoiding the expensive computation inherent in traditional dense algorithms. We show that our results can be used as is for a variety of video editing tasks. For applications where accuracy is paramount, we use our result to bootstrap a global optimization. This significantly reduces the running times of such methods without sacrificing accuracy. We also demonstrate that the SimpleFlow algorithm can process HD and 4K footage in reasonable times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.