Abstract
The shape of the Brillouin light-scattering spectrum recorded from turbid liquids is distinctly distorted compared to that from a transparent sample. The reason for this is the multiple scattering of light within the medium. The usual expression for the Brillouin spectrum does not apply to the multiple scattering situation. In this Letter, we consider a Brillouin spectrum from opaque samples composed of a distribution of spectra resulting from elementary scattering events, each occurring in single scattering vector conditions. We introduce a one-parameter test function to define the probability distribution of scattering events occurring at a given value of the scattering vector. The proposed procedure was tested on model liquids that consisted of suspensions of sub-micrometer spherical particles of different size and concentration, dispersed in different carrier liquids and studied as a function of temperature. Our analysis made it possible to account for the effect of multiple scattering and to recover the values of mechanical parameters describing the pure solvents.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have