Abstract
In this work we study algebraic and generic models for group actions, and extend them to the universal composability (UC) framework of Canetti (FOCS 2001). We revisit the constructions of Duman et al. (PKC 2023) integrating the type-safe model by Zhandry (Crypto 2022), adapted to the group action setting, and formally define an algebraic action model (AAM). This model restricts the power of the adversary in a similar fashion to the algebraic group model (AGM). By imposing algebraic behaviour to the adversary and environment of the UC framework, we construct the UC-AAM. Finally, we instantiate UC-AAM with isogeny-based assumptions, in particular the CSIDH action with twists, obtaining the explicit isogeny model, UC-EI; we observe that, under certain assumptions, this model is "closer" to standard UC than the UC-AGM, even though there still exists an important separation. We demonstrate the utility of our definitions by proving UC-EI security for the passive-secure oblivious transfer protocol described by Lai et al. (Eurocrypt 2021), hence providing the first concretely efficient two-message isogeny-based OT protocol in the random oracle model against malicious adversaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.