Abstract

This study presents a simple sensorless algorithm based on the high-frequency signal injection for an interior permanent magnet synchronous motor. The sensorless drive using a square-wave-type injection signal has an enhanced control bandwidth and reduced acoustic noise owing to the reduction of filters and availability of high injection frequency. However, this method still needs discrete filters to extract the fundamental and the injected frequency component currents; so it has a limitation in enhancing the sensorless control performance. Therefore this study proposes a simple algorithm, which eliminates these filters and further simplifies the signal process for estimating the rotor position. As a result, the overall sensorless control can be implemented easily without any filters while providing an enhanced dynamics. Additionally, a detection method of an initial rotor position for start-up by using the same square-wave-type voltage injection is introduced. The experimental result shows that the speed control bandwidth in the sensorless drive simplified by the proposed algorithm becomes very close to the one achieved in sensored drives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.