Abstract

AbstractThe Permanent Magnet Linear Motor (TPMLM) is widely used in different industrial fields. TPMLMs with slots and iron cores have high power density, but their thrust fluctuations and copper losses are significant. Due to the nonlinearity and saturation of magnetic circuits, their electromagnetic models are complex and the accuracy of numerical methods is very inferior. Substantially accurate modelling is crucial for motor optimisation design. In this paper, a data‐driven modelling method based on Bayesian optimisation deep neural network (DNN) is proposed to improve the accuracy of the electromagnetic field. The finite element (FE) modelling under different structural parameters is analysed and provides a training dataset for DNN. Then, a multi‐objective optimisation problem for the slotted TPMLM is carried out based on the multi‐objective black hole algorithm. Compared to the original design, the average thrust of TPMLM increased by 49.37%, the thrust fluctuation percentage decreased by 9.59%, and the coil copper consumption percentage decreased by 2.64%. The results show that the improved DNN model has very high modelling accuracy, providing a new way for motor design and optimisation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.