Abstract
In the presence of channel fluctuation, rate adaptation is one way to maintain the quality of the link at a desired level. This is especially important in ad hoc wireless networks, where temporary channel fluctuations might create frequent needs for rerouting that would result in severe overhead and adversely affect the performance. We study an unusual method of passive rate adaptation in which some bits are dropped at the receiver end of a link. The symbol-error probability decreases as some bits are dropped. In terms of the distortion for a realtime analog signal, the tradeoff is between more reliable detection of fewer bits and less reliable detection of more bits. Our scheme achieves smaller distortion for a certain region of signal-to-noise ratio (SNR) values when compared with the original scheme without rate adaptation. Two examples, uniformly spaced, uncoded pulse amplitude modulation and quadrature amplitude modulation, are studied and compared for both a Gaussian channel and a Rayleigh fading channel. We conclude that our scheme is more suitable to use in a fading channel than in a Gaussian channel. We also verify that our scheme has a larger applicable region of SNR values when a nonuniform constellation is used, since the important bits are given additional protection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have