Abstract

Photovoltaic (PV) panels are increasingly used to convert sunlight into electricity, as a source of sustainable energy. It can be used in a wide variety of applications ranging from the well-known power generation to the emerging energy harvesting in Internet of Things (IoT). Hence, an accurate model is required to evaluate and predict the performance of the PV panel. However, the non-linear characteristics of PV panels make the modeling of their electrical response a challenging task. In the literature, most of the previous PV models have been developed for large wattage PVs under high irradiance, or for small wattage PVs under lower irradiance. Those that can model both usually require more information, including the I-V curves data at different irradiances, which is not always provided by the manufacturers. Therefore, this paper presents a simple PV modeling that can be applied for different wattage panels at different operating levels of irradiance, using only the commonly provided datasheet values at standard test condition (STC). The model uses the characteristic points translation technique to translate the short circuit current, open circuit voltage and maximum power voltage points, at STC to other operating conditions. These translated values are then used by the parameter extraction technique to extract the model's parameters. The proposed model's techniques can model the losses across the resistors at low irradiance, which reduces the error. The accuracy of the proposed model is validated using two representative commercial PV panels. Results are generated for the proposed model and other comparative works. The results show that the proposed model can improve the accuracy over the other compared works, with a consistent percentage difference of below 5% across all levels of irradiances for both panels.

Highlights

  • Photovoltaic (PV) panels are increasingly used to convert the abundant and freely available sunlight into electrical energy

  • The model's percentage difference at low irradiance levels is more than 5% compared to the datasheet values

  • While at 400 W/m2, Wahed has generated an undershoot in the I-V curve for the 200 W panel where the maximum power point and open circuit voltage differ from the datasheet values

Read more

Summary

INTRODUCTION

Photovoltaic (PV) panels are increasingly used to convert the abundant and freely available sunlight into electrical energy. As the parameter scaling technique does not meet the expected accuracy at low irradiance levels, another analytical work in [23] uses the values of characteristic points at specific operating conditions to extract the model’s parameters. Despite that, those values are obtained through experiments as the datasheet gives values only at STC. The proposed model can model high and low wattage panels at different operating irradiance levels using only datasheet values at STC.

ONE DIODE MODEL WITH TWO RESISTORS
CHARACTERISTIC POINTS TRANSLATION TECHNIQUE
RESULTS AND DISCUSSION
CONCLUSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call