Abstract

In this work, a plasma assisted atomic layer deposition system was used to deposit nitrogen-doped titanium dioxide. A simple approach was developed that requires only a nitrogen plasma and short plasma exposure times to effectively dope TiO2. A range of nitrogen concentrations were achieved by varying the flow rate and exposure times of nitrogen and oxygen plasmas. A nitrogen content as high as 23 ± 0.5 at. % was observed when only the nitrogen plasma was used. It was also possible to vary the type of nitrogen doping from almost entirely interstitial to purely substitutional, as measured by x-ray photoelectron spectroscopy. Ultraviolet-visible spectroscopy measurements showed a shifting in the absorption edge from 350 to 520 nm with doping, indicating bandgap narrowing from 3.1 to 1.9 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call