Abstract

Nonparametric detrending or noise reduction methods are often employed to separate trends from noisy time series when no satisfactory models exist to fit the data. However, conventional noise reduction methods depend on subjective choices of smoothing parameters. Here we present a simple multivariate noise reduction method based on available nonlinear forecasting techniques. These are in turn based on state-space reconstruction for which a strong theoretical justification exists for their use in nonparametric forecasting. The noise reduction method presented here is conceptually similar to Schreiber's noise reduction method using state-space reconstruction. However, we show that Schreiber's method has a minor flaw that can be overcome with forecasting. Furthermore, our method contains a simple but nontrivial extension to multivariate time series. We apply the method to multivariate time series generated from the Van der Pol oscillator, the Lorenz equations, the Hindmarsh-Rose model of neuronal spiking activity, and to two other univariate real-world data sets. It is demonstrated that noise reduction heuristics can be objectively optimized with in-sample forecasting errors that correlate well with actual noise reduction errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.