Abstract

AbstractThermally activated delayed fluorescence (TADF) materials based on multiple resonance (MR) effect exhibit enormous potentials in organic light‐emitting diodes (OLEDs) with high color purity due to their intrinsically narrow emission. However, most of MR‐TADF emitters are limited to the boron‐nitrogen‐based rigid skeleton. In this work, three novel MR‐TADF emitters, namely CzBNO, DMAcBNO and DPAcBNO, are elaborately constructed, the TADF properties of which are realized by virtue of opposite MR effect of boron and nitrogen/oxygen atom. CzBNO‐based deep blue‐emitting OLEDs achieve a maximum external quantum efficiency (EQE) of 13.6% with a small FWHM of 36 nm, as well as a Commission Internationale de l'Eclairage (CIE) coordinate of (0.14,0.08). While the other two emitter‐based devices exhibit blue emission with a maximum EQE of up to 23.0%. To further improve the OLEDs performances, DMAcBNO and DPAcBNO‐based devices assisted by a sensitizer exhibit an excellent EQE of up to 29.6% with a relatively small efficiency roll‐off.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.