Abstract

In recent years, singular light beams with orbital angular momentum are one of the most striking examples of structured light that have been widely applied in modern science. The transition from the generation of a single vortex beam to the generation of multiple such beams progressed the development of singular optics. This paper presents a new efficient method of vortex laser beam splitting using a two-level pure-phase diffractive optical element. The proposed compact element, which can be easily implemented with a low-cost binary spatial light modulator or fabricated by electron beam lithography or photolithography, is a useful tool for the reconfigurable generation of multiple closed-packed vortex beams. Furthermore, the proposed splitter can efficiently operate in the wavelength range of approximately 8% of the central wavelength, thus providing an efficient method to generate optical vortex arrays with various potential applications in modern optics and photonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.