Abstract

The generation, propagation and application of vortex beams have been hot research topics in recent years. In this paper we introduce the novel multiple-ring vortex beams, including double-ring vortex beams and triple-ring vortex beams, which are generated by the coaxial superposition of multiple Laguerre-Gaussian vortex beams with different topological charge numbers and different waist parameters, and their intensity distribution is of multiple-ring. We study the generation and distribution characteristics of multiple-ring vortex beams theoretically, obtain the computer generated hologram of multiple-ring vortex beams based on conjugate symmetric extension Fourier computer generated holography, and experimentally generate quality multiple-ring vortex beams using a spatial light modulator. Excellent agreement between theoretical and experimental results is observed. The study indicates that each ring of multiple-ring vortex beams carries different orbital angular momentum, and the spatial distribution is independent. The novel multiple-ring vortex beams provide more controllable parameters and more diverse structure distributions, which enable their applications in the fields of micro-manipulation as optical tweezers or optical spanner. Furthermore, they also have potential applications as available encoding tools in optical communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call