Abstract
Automatic diacritization is an Arabic natural language processing topic based on the sequence labeling task where the labels are the diacritics and the letters are the sequence elements. A letter can have from zero up to two diacritics. The dataset used was a subset of the preprocessed version of the Tashkeela corpus. We developed a deep learning model composed of a stack of four bidirectional long short-term memory hidden layers of the same size and an output layer at every level. The levels correspond to the groups that we classified the diacritics into (short vowels, double case-endings, Shadda, and Sukoon). Before training, the data were divided into input vectors containing letter indexes and outputs vectors containing the indexes of diacritics regarding their groups. Both input and output vectors are concatenated, then a sliding window operation with overlapping is performed to generate continuous and fixed-size data. Such data is used for both training and evaluation. Finally, we realize some tests using the standard metrics with all of their variations and compare our results with two recent state-of-the-art works. Our model achieved 3% diacritization error rate and 8.99% word error rate when including all letters. We have also generated the confusion matrix to show the performances per output and analyzed the mismatches of the first 500 lines to classify the model errors according to their linguistic nature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have