Abstract

Electroosmotic pumps can deliver liquid without moving parts, making them suitable for microfluidic and lab‐on‐chip systems. Previously, alternating current electroosmotic pumps were constructed using pairs of coplanar asymmetrical interdigitated microelectrodes on the same substrate. In this work, a simpler micropumping system is developed, separating the electrodes on two substrates and breaking the symmetry by half‐depositing electrodes with 3D microstructures. Numerical simulation models of the pumping system and experimental velocity profiles are used to explain the fluid motion mechanism and structure‐dependent pumping performance. In addition to its efficiency and simplicity, this new pumping system also allows for the creation of a microvortex device and an active microfluidics device. This scalable micropumping system provides a way to pump liquids at microscopic or macroscopical scale in complex microfluidics systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call