Abstract

Nanoscale metal–organic frameworks (NMOFs) exhibit unique properties for drug delivery, including ultrahigh storage capabilities, biocompatibility, biodegradability, and sustained release of encapsulated cargo. However, due to their localized electronic states, MOFs are nonresponsive to external stimuli such as light or magnetic fields. This study investigates the integration of light‐responsive nanoantennas into NMOFs to enhance their application as smart drug delivery nanosystems. By integrating gold bipyramid nanoantennas within ZIF‐8 and NU‐1000 NMOFs, core@shell nanosystems are created with photothermal capabilities. Utilizing cresyl violet as a model drug, the loading and release dynamics of these nanosystems are analyzed, demonstrating controlled drug release under near‐infrared (NIR) light stimulation. Photothermal release studies conducted in living cells reveal the potential of these nanocomposites for spatiotemporal targeted, light‐activated drug delivery. Further evaluation of the NU‐1000 nanocomposite loaded with chemotherapeutics—doxorubicin, carboplatin, and oxaliplatin—in both 2D and 3D cell cultures shows the nanosystem effectiveness in cell internalization and therapeutic NIR activation. The findings demonstrate that the incorporation of stimuli‐responsive elements into NMOFs offers a promising approach for developing advanced drug delivery platforms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call