Abstract
In this paper we show that there exist exactly two nonequivalent simple infinite dimensional highest weight Cn modules having the property that every weight space is one dimensional. The tensor products of these modules with any finite-dimensional simple Cn module are proven to be completely reducible and we provide an explicit decomposition for such tensor products. As an application of these decompositions, we obtain two recursion formulas for computing the multiplicities of simple finite dimensional Cn modules. These formulas involve a sum over subgroups of index 2 in the Weyl group of Cn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.