Abstract

This paper studies a special case of graded central extensions of three dimen-sional Artin-Schelter regular algebras, see [9, §3]. The algebras are homoge-nizations of two classes of three dimensional skew polynomial algebras. We refer to these algebras as Type I and Type II algebras. We describe the non-commutative projective geometry and compute the finite dimensional simple modules for the homogenization of Type I algebras in the case that α is not a primitive root of unity. In this case, all finite dimensional simple modules are quotients of line modules that are homogenizations of Verma modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.