Abstract

Generating unoccupied orbitals within density functional theory (DFT) for use in GW calculations of quasiparticle energies becomes prohibitive for large systems. We show that, without any loss of accuracy, the unoccupied orbitals may be replaced by a set of simple approximate physical orbitals made from appropriately prepared plane waves and localized basis DFT orbitals that represent the continuum and resonant states of the system, respectively. This approach allows for accurate quasiparticle calculations using only a very small number of unoccupied DFT orbitals, resulting in an order of magnitude gain in speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call