Abstract

While CCSD(T) with spin-restricted Hartree-Fock (RHF) orbitals has long been lauded for its ability to accurately describe closed-shell interactions, the performance of CCSD(T) on open-shell species is much more erratic, especially when using a spin-unrestricted HF (UHF) reference. Previous studies have shown improved treatment of open-shell systems when a non-HF set of molecular orbitals, like Brueckner or Kohn-Sham density functional theory (DFT) orbitals, is used as a reference. Inspired by the success of regularized orbital-optimized second-order Møller-Plesset perturbation theory (κ-OOMP2) orbitals as reference orbitals for MP3, we investigate the use of κ-OOMP2 orbitals and various DFT orbitals as reference orbitals for CCSD(T) calculations of the corrected ground-state harmonic vibrational frequencies of a set of 36 closed-shell (29 neutrals, 6 cations, 1 anion) and 59 open-shell diatomic species (38 neutrals, 15 cations, 6 anions). The aug-cc-pwCVTZ basis set is used for all calculations. The use of κ-OOMP2 orbitals in this context alleviates difficult cases observed for both UHF orbitals and OOMP2 orbitals. Removing two multireference systems and 12 systems with ambiguous experimental data leaves a pruned data set. Overall performance on the pruned data set highlights CCSD(T) with a B97 orbital reference (CCSD(T):B97), CCSD(T) with a κ-OOMP2 orbital reference (CCSD(T):κ-OOMP2), and CCSD(T) with a B97M-rV orbital reference (CCSD(T):B97M-rV) with RMSDs of 8.48 cm-1, and 8.50 cm-1, and 8.75 cm-1 respectively, outperforming CCSD(T):UHF by nearly a factor of 5. Moreover, the performance on the closed- and open-shell subsets shows these methods are able to treat open-shell and closed-shell systems with comparable accuracy and robustness. CCSD(T) with RHF orbitals is seen to improve upon UHF for the closed-shell species, while spatial symmetry breaking in a number of restricted open-shell HF (ROHF) references leads CCSD(T) with ROHF reference orbitals to exhibit the poorest statistical performance of all methods surveyed for open-shell species. The use of κ-OOMP2 orbitals has also proven useful in diagnosing multireference character that can hinder the reliability of CCSD(T).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.