Abstract

Shift and days-off scheduling problems have received much attention in the literature of integer programming approaches to workforce scheduling. A typical managerial use would be to schedule full-time employees to minimize the number of labor hours while satisfying variable workforce requirements of a service delivery system. We present computational experience to show that an easily implemented application of linear programming frequently produces optimal solutions to these problems. When the context progresses toward a continuous operating environment (service delivery over 24 hours a day, 7 days a week) we stress the need to shed the myopic views of the shift and days-off scheduling formulations in favor of an integrative tour scheduling formulation. For this problem we observe that a simple heuristic initiated by rounding down the associated LP solution consistently produces near optimal solutions. This observation is based on experiments over varying workforce requirement patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.