Abstract

Oligosaccharides have diverse functions in biological systems. However, the structural determination of oligosaccharides remains difficult and has created a bottleneck in carbohydrate research. In this study, a new approach for the de novo structural determination of underivatized oligosaccharides is demonstrated. A low-energy collision-induced dissociation (CID) of sodium ion adducts was used to facilitate the cleavage of desired chemical bonds during the dissociation. The selection of fragments for the subsequent CID was guided using a procedure that we built from the understanding of the saccharide dissociation mechanism. The linkages, anomeric configurations, and branch locations of oligosaccharides were determined by comparing the CID spectra of oligosaccharide with the fragmentation patterns based on the dissociation mechanism and our specially prepared disaccharide CID spectrum database. The usefulness of this method was demonstrated to determine the structures of several mannose trisaccharides. This method can also be applied in the structural determination of oligosaccharides larger than trisaccharides and containing hexose other than mannose if authentic standards are available. Graphical Abstract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call