Abstract

Potassium (K) in plant tissue is not bound to organic compounds and occurs in soluble forms, thus indicating the ease of its extractability. The conventional methods of plant-sample preparation for K determination are often tedious, time-consuming, and/or require chemicals, making the analysis expensive. In this investigation, we propose a water extraction method for assaying K concentration in tobacco leaf tissue and evaluate it for analytical accuracy and precision in comparison to the established methods, namely, triacid digestion, 1 N ammonium acetate (NH4OAc) extraction, and 0.5 N hydrochloric acid (HCl) extraction. The proposed method entails extracting K from 0.5 g finely ground plant tissue (<0.5-mm sieve) with distilled water at a 1:100 ratio (sample weight to water volume, w/v) by shaking for 20 mins and filtering before K measurement by flame photometry. Results with 25 tobacco leaf samples having a wide range in K concentrations showed very close agreement between the values of K determined by the proposed water extraction method and the established methods. The mean K concentration obtained with water extraction method was within 3 to 6% of those measured by established methods. The correlations between the K values obtained by the established methods and the water extraction method were highly significant (P = 0.01), and the relationships are best described by linear regression equations with high values of R2 (>0.99). The standard errors (SEs) and coefficient of variation (CV) for K measurements by different methods followed the order water extraction < HCl extraction < triacid digestion < NH4OAc extraction. The results suggest that the water extraction method is comparable in accuracy and superior in precision to the established methods for K determination. Being simple, rapid, and inexpensive, the water extraction method could be used as an alternative to the most commonly employed standard, triacid digestion, for routine analysis of K in tobacco plant tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call