Abstract

Thanks to their ability to control light, research on metalenses is developing rapidly. However, it is still quite difficult to design broadband metalenses with high polarization conversion efficiency. In this study, an alternative plasmonic material, aluminum-doped zinc oxide, is presented for metalens operating in near-infrared regime. We propose simple and hybrid metalenses with high polarization conversion efficiency and high transmission values that can focus efficiently in a wide near-infrared bandwidth (700–1000 nm). We design metalens consisting of subwavelength aluminum-doped zinc oxide nanoblocks based the Pancharatnam-Berry phase method and utilizing the finite-difference time-domain method. The polarization conversion efficiency (minimum 87 %) and transmission values (minimum 85 %) calculated for the metalens unit cell are higher than those previously obtained over the entire 300 nm bandwidth. In addition, we propose hybrid metalens to focus the incident beam in right and left handed circular polarized states in the studied frequency range. The presented aluminum-doped zinc oxide metalens with high polarization conversion efficiency and transmission values can find a place in the applications of near-infrared nanophotonic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.