Abstract

Heterogeneous graph neural networks (HGNNs) have the powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations. Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) designed for homogeneous graphs, especially the attention mechanism and the multi-layer structure. These mechanisms bring excessive complexity, but seldom work studies whether they are really effective on heterogeneous graphs. In this paper, we conduct an in-depth and detailed study of these mechanisms and propose the Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN). To easily capture structural information, SeHGNN pre-computes the neighbor aggregation using a light-weight mean aggregator, which reduces complexity by removing overused neighbor attention and avoiding repeated neighbor aggregation in every training epoch. To better utilize semantic information, SeHGNN adopts the single-layer structure with long metapaths to extend the receptive field, as well as a transformer-based semantic fusion module to fuse features from different metapaths. As a result, SeHGNN exhibits the characteristics of a simple network structure, high prediction accuracy, and fast training speed. Extensive experiments on five real-world heterogeneous graphs demonstrate the superiority of SeHGNN over the state-of-the-arts on both accuracy and training speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call