Abstract
Aspect-based sentiment analysis aims to predict sentiment polarities of given aspects in text. Most current approaches employ attention-based neural methods to capture semantic relationships between aspects and words in one sentence. However, these methods ignore the fact that sentences with the same aspect and sentiment polarity often share the structure and semantic information in a domain, which leads to lower model performance. To mitigate this problem, we propose a heterogeneous aspect graph neural network (HAGNN) to learn the structure and semantic knowledge from intersentence relationships. Our model is a heterogeneous graph neural network since it contains three different kinds of nodes: word nodes, aspect nodes, and sentence nodes. These nodes can pass structure and semantic information between each other and update their embeddings to improve the performance of our model. To the best of our knowledge, we are the first to use a heterogeneous graph to capture relationships between sentences and aspects. The experimental results on five public datasets show the effectiveness of our model outperforming some state-of-the-art models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.