Abstract

Stephen Hawking, among others, has proposed that the topological stability of a property of space-time is a necessary condition for it to be physically significant. What counts as stable, however, depends crucially on the choice of topology. Some physicists have thus suggested that one should find a canonical topology, a single ‘right’ topology for every inquiry. While certain such choices might be initially motivated, some little-discussed examples of Robert Geroch and some propositions of my own show that the main candidates—and each possible choice, to some extent—faces the horns of a no-go result. I suggest that instead of trying to decide what the ‘right’ topology is for all problems, one should let the details of particular types of problems guide the choice of an appropriate topology. 1 Introduction2 Similarity, Topology, and Physical Significance3 The Open Topologies4 Continuity in the Geometric Sense and the Compact-Open Topologies5 Methodological Contextualism Appendix

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.