Abstract
This Letter proposes an algorithm to detect an unknown deterministic signal hidden in additive white Gaussian noise. The detector is based on recurrence analysis. It compares the distribution of the similarity matrix coefficients of the measured signal with an analytic expression of the distribution expected in the noise-only case. This comparison is achieved using divergence measures. Performance analysis based on the receiver operating characteristics shows that the proposed detector outperforms the energy detector, giving a probability of detection 10% to 50% higher, and has a similar performance to that of a sub-optimal filter detector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.