Abstract

Measuring the similarity between two trajectories is fundamental and essential for the similarity-based remaining useful life (RUL) prediction. Most previous methods do not adequately account for the epistemic uncertainty caused by asynchronous sampling, while others have strong assumption constraints, such as limiting the positional deviation of sampling points to a fixed threshold, which biases the results considerably. To address the issue, an uncertain ellipse model based on the uncertain theory is proposed to model the location of sampling points as an observation drawn from an uncertain distribution. Based on this, we propose a novel and effective similarity measure metric for any two degradation trajectories. Then, the Stacked Denoising Autoencoder (SDA) model is proposed for RUL prediction, in which the models can be first trained on the most similar degradation data and then fine-tuned by the target dataset. Experimental results show that the predictive performance of the new method is superior to prior methods based on edit distance on real sequence (EDR), longest common subsequence (LCSS), or dynamic time warping (DTW) and is more robust at different sampling rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.