Abstract
GPU architectures have become popular for executing general-purpose programs. In particular, they are some of the most efficient architectures for machine learning applications which are among the most trendy and demanding applications nowadays.This paper presents SIMIL (SIMple Issue Logic for GPUs), an architectural modification to the issue stage that replaces scoreboards with a Dependence Matrix to track dependencies among instructions and avoid data hazards. We show that a Dependence Matrix is more effective in the presence of repetitive use of source operands, which is common in many applications. Besides, a Dependence Matrix with minor extensions can also support a simplistic out-of-order issue. Evaluations on an NVIDIA Tesla V100-like GPU show that SIMIL provides a speed-up of up to 2.39 in some machine learning programs and 1.31 on average for various benchmarks, while it reduces energy consumption by 12.81%, with only 1.5% area overhead. We also show that SIMIL outperforms a recently proposed approach for out-of-order issue that uses register renaming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.