Abstract

Conceptual DFT gives sharp definitions for many long-known, but rather vaguely defined chemical concepts. In this study DFT-based reactivity indices are applied to silylenes in order to elucidate the relationships among their properties: stability, acid-base, and spin properties, nucleophilicity and electrophilicity. On the basis of a detailed, comparative analysis of previously published data, it is shown that the properties of simple silylenes can be tuned by varying one single factor, the pi-electron donating ability of the substituents of the silicon atom leading to well-characterized and systematic changes in the stability/reactivity pattern of the molecule. In order to test the model a series of new compounds are studied: including CH3SiR (where R = CH3, NH2, OH and SH), Si(Si(CH3)3)2, Si(CF3)2 and benzo-, pyrido-, pyridazo-, and pyrimido-anellated-1,3,2lambda2-diazasiloles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.