Abstract
Facile synthesis of metal nanoparticles with controlled physicochemical properties using environment-friendly reagents can open new avenues in biomedical applications. Nanomaterials with controlled physicochemical properties have opened new prospects for a variety of applications. In the present study, we report a single-step photochemical synthesis of ~5 nm-sized silver (Ag) and gold (Au) nanoparticles (NPs), and Ag-Au alloy nanoparticles using L-tyrosine. The physicochemical and surface properties of both monometallic and bimetallic NPs were investigated by analytical, spectroscopic, and microscopic techniques. Our results also displayed an interaction between L-tyrosine and surface atoms that leads to the formation of AgAu NPs by preventing the growth and aggregation of the NPs. This method efficiently produced monodispersed NPs, with a narrow-sized distribution and good stability in an aqueous solution. The cytotoxicity assessment performed on breast cancer cell lines (MCF-7) revealed that the biofriendly L-tyrosine-capped AgNPs, AuNPs, and bimetallic AgAu NPs were biocompatible. Interestingly, AgAu NPs have also unveiled controlled cytotoxicity, cell viability, and in vitro peroxidase nanozyme activity reliant on metal composition and surface coating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.