Abstract

Perchlorate, which causes health concerns because of its effects on the thyroid function, is highly soluble and mobile in the environment. In this study, diethyldithiocarbamate (DDTC)-modified silver nanoplates were fabricated on a copper wire to perform the on-site microextraction and detection of perchlorate. This fiber could be inserted into water or soil to extract perchlorate through electrostatic interaction and then can be detected by a portable Raman spectrometer, owing to its surface-enhanced Raman (SERS) activity. A relatively stable vibrational mode (δ(HCH)(CH3), (CH2)) of DDTC at 1273 cm(-1) was used as an internal standard, which was negligibly influenced by the absorption of ClO4(-). The DDTC-modified Ag/Cu fiber showed high uniformity, good reusability and temporal stability under continuous laser radiation each with an RSD lower than 10%. The qualitative and quantitative detection of perchlorate were also realized. A log-log plot of the normalized SERS intensity against perchlorate concentration showed a good linear relationship. The fiber could be also directly inserted into the perchlorate-polluted soil, and the perchlorate could thereby be detected on site. The detection limit in soil reached 0.081 ppm, which was much lower than the EPA-published safety standard. The recovery of the detection was 105% and comparable with the ion chromatography. This hyphenated method of microextraction with direct SERS detection may find potential application for direct pollutant detection free from complex sample pretreatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.