Abstract

In the present work, blood and blood plasma interaction to silver stabilised polyelectrolytes was investigated in vitro. The designed materials are dedicated for regeneration of the cardiovascular system. Silver nanoparticles were introduced into the polyelectrolyte structure in order to reduce the risk of bacterial biofilm formation. The introduction of Ag nanoparticles occurred by deposition at high vacuum by magnetron sputtering. The analysis of blood-materials interactions were performed by using commercially available tester, Impact-R (Diamed). The assessment of silver ion nanoparticles release into the plasma consisted in determining the Prothrombin Time (PT) and Activated Partial Thromboplastin Time (APTT). Unmodified surface of polyelectrolytes is a strong activator for blood elements. The introduction of silver nanoparticles resulted in a significant reduction in the probability of clotting. The extrinsic pathway of coagulation determined on the basis of the PT and the intrinsic and common pathways of coagulation measured by the APTT did not indicate the danger out of range. Microstructure was studied using TEM on thin foils prepared from the cross-section of samples subjected to biomedical treatments. The observations revealed hetero- interface between two different crystalline solids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.