Abstract

One of the most promising, non-toxic, and biocompatible developments for many biological activities is the green synthesis of nanoparticles from plants. In this work, we investigated the antifungal activity of silver nanoparticles (AgNPs) biosynthesized from Rhazya stricta aqueous extract against several plant pathogenic fungi. UV–visible spectroscopy, Zeta potential analysis, Fourier-transform infrared spectroscopy (FTIR), and transmitted electron microscopy (TEM) were used to analyze the biosynthesized AgNPs. Drechslera halodes, Drechslera tetramera, Macrophomina phaseolina, Alternaria alternata, and Curvularia australiensis were tested for their potential antifungal activity. Surface Plasmon Resonance (SPR) of Aq. AgNPs and Alkaline Aq. AgNPs was observed at 405 nm and 415 nm, respectively. FTIR analysis indicated hydroxyl, nitrile, amine, and ketone functional groups. Aq. AgNPs and Alka-line Aq. AgNPs had velocities of − 27.7 mV and − 37.9 mV and sizes of 21–90 nm and 7.2–25.3 nm, respectively, according to zeta potential studies and TEM. The antifungal examination revealed that all species' mycelial development was significantly inhibited, accompanied by severe ultra-structural alterations. Among all treatments, Aq. AgNPs were the most effective fungicide. M. phaseolina was statistically the most resistant, whereas A. alternata was the most vulnerable. To the best of our knowledge, this is the first report on R. stricta's antifungal activity against these species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.