Abstract

Designing of a green and multifunctionally integrated cellulose-based flexible wearable material with personal thermoregulation, water and ultraviolet (UV) resistance is essential for the development of personal thermal management and smart textiles. Herein, a hydrophobic silver nanoparticles cellulose-based membrane (H-AgNPs/CEPCM) was prepared through simple solution blending, spin-coating process and chemical vapor modification. The prepared membrane exhibited excellent UV resistance due to the synergistic effect of carbon quantum dots (CQDs) as well as UV-absorbing functional groups. The spin-coated AgNPs layer with high infrared reflectivity has great radiant insulation, and temperature was reduced by 3.4 °C compared with H-CEPCM in indoor environment. Furthermore, the mechanical properties of H-AgNPs/CEPCM were significantly improved by the introduction of amide and ether bonds, as well as a large number of hydrogen bonds. This led to a tensile strength of 23.21 MPa and an elongation at break of 16.57 %, while also providing water resistance. Additionally, the H-AgNPs/CEPCM exhibited outstanding thermal stability and hydrophobicity. This work may provide a feasible and promising strategy for the construction of multifunctional integrated cellulose membrane materials for radiant insulation, outdoor textiles and novel UV protection applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.