Abstract

Rapid Ca2+ release from Ca2+ -loaded sarcoplasmic reticulum vesicles (SR) was previously shown to occur upon the addition of micromolar concentrations of heavy metals, and the extent of Ca2+ release was dependent on the binding affinity of the metal to sulfhydryl group(s) on an SR protein (Abramson, J.J., Weden, L., Trimm, J.L., and Salama, G. (1982) Biophys. J. 37, 134a; Abramson, J.J., Trimm, J.L., Weden, L., and Salama, G. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 1526). The nature of this Ca2+ release site was examined further and found to be predominantly distributed in heavy SR (HSR) rather than light SR fractions. Ag+ -induced Ca2+ release from heavy SR was blocked by local anesthetics and ruthenium red which are known to inhibit Ca2+ release in skeletal fibers and in heavy SR, respectively. The rate of Ca2+ efflux from SR triggered by Ag+ was dependent on pH, Mg2+, and ionic strength of the medium. Efflux rates increased by a factor of 4 from pH 6.0 to 7.0 and then decreased in more alkaline reaction mixtures. Efflux rates from actively or passively loaded SR increased by a factor of 2.5 with increasing Mg2+ from 0 to 1 mM and then decreased in the range of 1 to 10 mM Mg2+. ATP-dependent Ca2+ uptake by SR was similar in 100 mM KCl and in 200 mM sucrose solutions, but the extent and rate of Ca2+ efflux induced by Ag+ were dramatically reduced with decreasing ionic strength of the medium. In solutions containing 5 mM Mg2+, the rate of Ca2+ efflux from heavy SR averaged over the first 1.5 s after the addition of Ag+ was 58 nmol of Ca2+/mg of SR/s, a value comparable to the fast initial rate of ATP-dependent Ca2+ uptake. The maximum initial rate of Ag+ -induced Ca2+ efflux from heavy SR in 1 mM Mg2+ may be comparable to the rate of Ca2+ release and tension development in muscle fibers. Our data indicate that Ag+ reacts with a protein or proteins in the SR, probably not the (Ca2+, Mg2+)-ATPase, to induce a rapid release of Ca2+, possibly from the physiological Ca2+ release site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.