Abstract

The characteristics of silver inkjet printing were intensively investigated with control of surface energy and substrate temperature. A fluorocarbon (FC) film was spincoated on a silicon (Si) substrate to obtain a hydrophobic surface, and an ultraviolet (UV)/ozone (O3) treatment was performed to control the surface wettability of the FC film surface. To characterize the surface changes, we performed measurements of the static and dynamic contact angles and calculated the surface energy by Wu's harmonic mean model. The surface energy of the FC film increased with the UV/O3 treatment time, while the contact angles decreased. In silver inkjet printing, the hydrophobic FC film could reduce the diameter of the printed droplets. Merging of deposited droplets was observed when the substrate was kept at room temperature. Substrate heating was effective in preventing the merging phenomenon among the deposited droplets, and in reducing the width of printed lines. The merging phenomenon of deposited droplets was also prevented by increasing the UV/O3 treatment time. Continuous silver lines in the width range of 48.04–139.21 µm were successfully achieved by inkjet printing on the UV/O3-treated hydrophobic FC films at substrate temperatures below 90 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.